Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
giúp mik vs ạ mik cho 5 sao
Cho tam giác ABC cân tại A và điểm M tùy ý nằm trong tam giác. Kẻ tia Mx song song với BC cắt AB ở D, tia My song song với AC cắt BC ở E. Chứng minh:
a) BDME là hình thang cân
b) \(\widehat{DME}=90^0+\frac{\widehat{A}}{2}\)
Cho tam giác ABC . Từ A kẻ đường thẳng d vuông góc với AB. Phần giác góc ABC cắt đường cao AH tại I và cắt d tại D.
a)c/m rằng tam giác AID cân
b)từ D kẻ DK vuông góc với BC. C/m rằng tam giác ADI=tam giác KDI
c)trên tia đối của tia HI lấy điểm E sao cho HE=HI. C/m rằng tứ giác ADKE là hình thang cân
(Mn giúp e gấp vs ạ, cảm ơn mn<3000)
Cho tam giác đều ABC và điểm M thuộc miền trong của tam giác.Qua M kẻ đường thẳng song song với AC cắt BC ở E,đường thẳng song song với AB cắt Ac tại F.Chứng minh rằng:
a,Các tứ giác BDME,CFME,ADMF là các hình thang cân
b,Chu vi tam giác DEF bằng tổng các khoảng cách từ M đến các đỉnh của tam giác ABC
c,Góc DME=góc DMF=góc EMF
Ai giải được nhanh và đúng nhất.mình tick liền cho nha:>
Cho tam giác ABC cân tại A và điểm M là điểm tùy ý nằm trong tam giác . Kẻ tia Mx song song với BC cắt AB ở D, tia My tùy ý song song với AC cắt BC ở E. C/m : ∠DME = \(90^o\) + \(\dfrac{A}{2}\)
cho tam giác ABC vuông tại A có góc B= 60 độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) CM: tam giác CEF đều
b)vẽ CD vuông góc với EF. CM: tứ giác ABCD là hình thang cân.
Cho tam giác ABC cân tại A. Lấy điểm M bất kỳ trên AB. Qua M vẽ đường thẳng song
song với BC và cắt AC tại N. Chứng minh tứ giác MNCB là hình thang cân.
cho tam giác abc cân tại A,lấy điểm D bất kỳ trên AB, lấy điểm E trên tia đối của tia CA sao cho CE=BD. từ D kẻ đường thẳng song song với AC cắt BC tại F
1.tam giác DBF là tam giác j?
2.c/m DCEF là hình bình hành?
Cho tam giác ABC có AB < AC, đường trung trực của BC cắt BC,AC lần
lượt tại M,N. Qua A kẻ đường thẳng vuông góc với MN, đường thẳng này cắt BN tại D.
a)Chứng minh: Tam giác AND cân
b) Chứng minh: ABCD là hình thang cân