Bài 3: Hình thang cân

CT

Cho tam giác ABC có AB < AC, đường trung trực của BC cắt BC,AC lần
lượt tại M,N. Qua A kẻ đường thẳng vuông góc với MN, đường thẳng này cắt BN tại D.
a)Chứng minh: Tam giác AND cân
b) Chứng minh: ABCD là hình thang cân

NT
24 tháng 8 2021 lúc 21:03

a: Ta có: NM là đường trung trực của BC

nên NM⊥BC tại M

mà NM⊥AD

nên BC//AD

Ta có: N là điểm nằm trên đường trung trực của BC

nên NB=NC

Xét ΔAND và ΔCNB có 

\(\widehat{AND}=\widehat{CNB}\)

\(\widehat{ADN}=\widehat{CBN}\)

Do đó: ΔAND\(\sim\)ΔCNB

Suy ra: \(\dfrac{AN}{CN}=\dfrac{ND}{NB}\)

\(\Leftrightarrow AN=ND\)

Xét ΔAND có AN=ND

nên ΔNAD cân tại N

b: Ta có: NA+NC=AC

ND+NB=DB

mà NA=ND

và NC=NB

nên AC=DB

Xét tứ giác ABCD có AD//BC

nên ABCD là hình thang

mà AC=DB

nên ABCD là hình thang cân

Bình luận (0)

Các câu hỏi tương tự
YH
Xem chi tiết
DH
Xem chi tiết
NV
Xem chi tiết
DL
Xem chi tiết
PB
Xem chi tiết
TD
Xem chi tiết
SK
Xem chi tiết
MD
Xem chi tiết
NB
Xem chi tiết