Bài 1: Tổng ba góc của một tam giác

NT

Vẽ tam giác ABC. Gỉa sử \(\widehat{A}\) = 60o. Hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại I.

a, So sánh \(\widehat{IBC}+\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)

b, Tính \(\widehat{BIC}\)

TH
28 tháng 8 2018 lúc 18:59

A B C 60 I

P/s: Hình vẽ chỉ để giúp nhìn rõ vấn đề hơn nhưng độ chính xác không cao

a) Vì BI là tia phân giác của góc ABC

\(\Rightarrow\widehat{IBC}=\dfrac{\widehat{ABC}}{2}\left(1\right)\)

Vì CI là tia phân giác của góc ACB

\(\Rightarrow\widehat{ICB}=\dfrac{\widehat{ACB}}{2}\left(2\right)\)

Từ (1) và (2) suy ra

\(\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)

\(\dfrac{\widehat{ABC}+\widehat{ACB}}{2}< \widehat{ABC}+\widehat{ACB}\)

\(\Rightarrow\widehat{IBC}+\widehat{ICB}< \widehat{ABC}+\widehat{ACB}\)

b) Vì \(\widehat{A}=60^0\)

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)

Hay \(\widehat{IBC}+\widehat{IBA}+\widehat{ICB}+\widehat{ICA}=120^0\)

\(\Rightarrow2\widehat{IBC}+2\widehat{ICB}=120^0\)

\(\Rightarrow2\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)

\(\Rightarrow\widehat{IBC}+\widehat{ICB}=60^0\)

Ta có: \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)

\(\Rightarrow60^0+\widehat{BIC}=180^0\)

\(\Rightarrow\widehat{BIC}=180^0-60^0=120^0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
SK
Xem chi tiết
TD
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
MK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
MK
Xem chi tiết