a: Sửa đè: BKDC nội tiếp
Xét tứ giác BKDC có
góc BKC=góc BDC=90 độ
nên BKDC là tứgiác nội tiếp
b: BKDC là tứ giác nội tiếp
=>góc BKD+góc BCD=180 độ
=>góc AKD=góc ACB
Xét ΔAKD và ΔACB có
góc AKD=góc ACB
góc KAD chung
Do đó: ΔAKD đồng dạng với ΔABC
a: Sửa đè: BKDC nội tiếp
Xét tứ giác BKDC có
góc BKC=góc BDC=90 độ
nên BKDC là tứgiác nội tiếp
b: BKDC là tứ giác nội tiếp
=>góc BKD+góc BCD=180 độ
=>góc AKD=góc ACB
Xét ΔAKD và ΔACB có
góc AKD=góc ACB
góc KAD chung
Do đó: ΔAKD đồng dạng với ΔABC
Cho tam giác ABC có ba góc nhọn. Đường cao BD và Ck cắt nhau tại H.
a)Chứng minh tứ giác ADHK nội tiếp được trong một đường tròn
b)Chứng minh tam giác AKD và tam giác ADB đồng dạng.
c)Kẻ tiếp tuyến Dx tại của đường tròn tâm O đường kính BC cắt AH tại M. Chứng minh là M trung điểm của AH.
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao AM và CN của tam giác ABC cắt nhau tại H. Gọi D và E là giao điểm thứ hai của tia AM và tia CN vs đườg tròn(O).chứng minh: a. Tứ giác BNHM nội tiếp b.BD=BE=BH c.ED//MN
cho tam giác ABC nhọn nội tiếp đường tròn (O). Hai đường cao AM ,BN cắt nhau tại H và cắt đường tròn (O) lần lượt tại D,E. chứng minh rằng
a. tứ giác HMCN nội tiếp đường tròn
b. CD=CE
c. tam giác BHD cân
Cho tam giác ABC nhọn, kẻ 2 đường cao BD và CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) CM tứ giác BEDC nội tiếp . c) góc acd = góc aed . d) góc edb =ecb
Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O). BD , CE cắt nhau tại H. Đường thẳng BD cắt ( O ) tại M. đường thẳng CE cắt ( O ) tại N.a) Chứng minh AE.AB = AD.AC b ) Chứng minh tứ giác BEDC nội tiếp . c ) Chứng minh MN // DE . c ) Chứng minh OA vuông góc ED
Cho tam giác ABC nhọn, ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác AEHF là tứ giác nội tiếp. b) Chứng minh tứ giác ABDE là tứ giác nội tiếp. c) Chứng minh DH là tia phân giác của góc EDF
Cho tam giác ABC có 3 góc nhọn với các đường cao BD , CE . e) Chứng minh BEDC là tứ giác nội tiếp . f) Chứng minh : AD.AC = AE.AB . g) Kẻ tiếp tuyến Ax của đường tròn ngoại tiếp tam giác ABC . Chứng minh rằng : Ax // ED .