Cho đường trong tâm O , đg kính bc . Lấy điểm A trên cung bc sao cho ab<ac . Trên oc lấy D từ D kẻ đg thẳng vuông góc với bc cắt ac tại e .
a, chứng minh abde là tứ giác nội tiếp
b, chứng minh góc dae bằng góc dbe
c, đường cao ah của tam giác abc cắt đg tròn tại f . Chứng minh hf.dc = hc.ed
Cho tam giác ABC nhọn . AM và BN là hai đường cao của tam giác ( M thuộc BC , N thuộc AC ) a) chứng minh tứ giác ANMB nội tiếp đường tròn b) chứng minh góc AMN = góc ABN c) giả sử góc C = 30°. Tính số đo cung MN
Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn đường kính AH cắt AB, AC lầnlượt ở E, F.a. Chứng minh AEHF là hình chữ nhật.b. Chứng minh BEFC nội tiếp và AE. AB = AF. ACc. Đường thẳng qua A vuông góc với EF cắt BC tại I. CMR: I là trung điểm của BC.d. Chứng minh nếu diện tích tam giác ABC bằng 2 lần diện tích của tứ giác AEHF thì tam giác ABCvuông cân.
Mình lm đc câu a,b r giúp mình câu c,d với
cho tam giác ABC có 3 góc nhọn AB<AC. AD,BE,CF là các đường cao. EF giao với BC tại N.Đường thẳng D//EF và cắt AB,AC tại X,Y
a, chứng minh BCEF ,ACDF nội tiếp
b, EB là phân giác góc DEF và AX/AY bằng AC/AB
cho tam giác ABC có ba góc nhọn đường cao BE . gọi H và K lần lượt là chân các đường vuông góc kẻ từ E đến AB , AC
a, CMR tứ giác BHEK nội tiếp
b, CMR : BH. BA = BK . BC
c, gọi F là chân các đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF . CMR H ,I , K thẳng hàng
Cho tam giác ABC vuông tại A(AB>AC) có đường cao AH (H thuộc BC).Trên nửa mp bờ BC chứa điểm A,vẽ nửa đường tròn(O1) đường kính BH cắt AB tại I (I khác B) và nửa đường tròn (O2) đường kính HC cắt AC tại K (K khác C).CM
a) Tứ giác BIKC là tứ giác nội tiếp
b) IK là tiếp tuyến chung của 2 nửa đtron (O1) và (O2)
Giúp mình với ạ,mình cảm ơn rất nhiềuuuuuu
Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.
Cho tam giác ABC có góc A < 90 độ các đường cao AD và BE cắt nhau tại H (D thuộc BC, E thuộc AC). Chứng minh các tứ giác DHEC và ABDE nội tiếp đường tròn.
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC