Bài 6: Trường hợp đồng dạng thứ hai

H24

  Cho tam giác ABC có 3 góc nhọn và 3 đường cao AD, BE, CF cắt nhau tại H. Chứng minh
1, BD.BC= BF.BA
2, Tam giác BDF đồng dạng với tam giác BAC và góc BDF = góc BAC
3, góc CDE = góc BAC
4, DH là phân giác của góc FDE

NT
19 tháng 2 2022 lúc 14:18

1: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

\(\widehat{DBA}\) chung

Do đó: ΔBFC\(\sim\)ΔBDA

Suy ra: BF/BD=BC/BA

hay \(BF\cdot BA=BD\cdot BC\)

2: Ta có: BF/BD=BC/BA

nên BF/BC=BD/BA

Xét ΔBDF và ΔBAC có 

BF/BC=BD/BA

\(\widehat{DBF}\) chung

Do đó: ΔBDF\(\sim\)ΔBAC
SUy ra: \(\widehat{BDF}=\widehat{BAC}\)

3: Xét tứ giác ABDE có 

\(\widehat{ADB}=\widehat{AEB}=90^0\)

Do đó: ABDE là tứ giác nội tiếp

Suy ra: \(\widehat{BAC}+\widehat{BDE}=180^0\)

mà \(\widehat{CDE}+\widehat{BDE}=180^0\)

nên \(\widehat{CDE}=\widehat{BAC}\)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
PN
Xem chi tiết