Bài 6: Tam giác cân

SK

Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Tính số đo góc BCD ?

PT
31 tháng 5 2017 lúc 20:43

Hình vẽ:

A B C D

Giải:

Ta có: \(AB=\dfrac{BD}{2}\) ( \(A\) là trung điểm của \(BD\) )

\(AB=AC\) ( Vì tam giác \(ABC\) cân tại \(A\) )

\(\Rightarrow AC=\dfrac{BD}{2}\)

\(AC\) là đường trung tuyến của tam giác \(CBD\) ( \(A\) là trung điểm của\(BD \) ).

\(\Rightarrow\Delta CBD\) vuông tại \(C.\)

\(\Rightarrow\widehat{BCD}=90^o\)

Bình luận (1)
NT
5 tháng 2 2018 lúc 19:56

Vì AC = AD

\(\Rightarrow\Delta ACD\) cân ại A

\(\Rightarrow\widehat{ACD}=\widehat{ADC}\) (1)

\(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) (2)

\(\Delta BDC\) có :

\(\widehat{ABC}+\widehat{ACB}+\widehat{DCA}+\widehat{CDA}=180^0\)

Từ (1) và (2)

\(\Rightarrow\widehat{ABC}+\widehat{ADC}=\widehat{ACB}+\widehat{DCA}\)

\(\Rightarrow\left(\widehat{ACB}+\widehat{DCA}\right)\times2=180^0\)

\(\Rightarrow\widehat{ACB}+\widehat{DCA}=180^0\times\dfrac{1}{2}=90^0\)

\(\Rightarrow\widehat{BCD}=90^0\)

ngoamngoamngoam

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
HN
Xem chi tiết
HT
Xem chi tiết
LN
Xem chi tiết
DN
Xem chi tiết
NK
Xem chi tiết
KP
Xem chi tiết