Bài 6: Tam giác cân

H24

Cho tam giác ABC vuông, cân tại A. Trên đường thẳng AB lấy điểm D sao cho BD = BC ( D và A khác phía so vs B ). Tính số đo các góc của tam giác ADC

 

LL
4 tháng 9 2021 lúc 17:41

Xét tam giác ABC vuông cân tại A có:

\(\widehat{ABC}=\widehat{ACB}=\left(180^0-90^0\right):2=45^0\)

Xét tam giác BDC có:

\(BD=BC\left(gt\right)\)

=> Tam giác BDC cân tại B

=> \(\widehat{BDC}=\widehat{BCD}\)

Mà \(\widehat{ABC}=\widehat{BDC}+\widehat{BCD}\)(Tính chất góc ngoài tam giác)

\(\Rightarrow45^0=2.\widehat{BDC}=2\widehat{BCD}\)

\(\Rightarrow\widehat{BCD}=\widehat{BDC}=22,5^0\)

Ta có: \(\widehat{ACD}=\widehat{BCD}+\widehat{ACB}=45^0+22,5^0=67,5^0\)

Vậy số đo 3 góc tam giác ABC là: \(\widehat{DAC}=90^0,\widehat{ADC}=22,5^0,\widehat{ACD}=67,5^0\)

Bình luận (0)
DN
4 tháng 9 2021 lúc 17:47

undefined

Bình luận (0)
ND
4 tháng 9 2021 lúc 17:55

ko bt

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
NV
Xem chi tiết
NA
Xem chi tiết
PA
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết