Bài 6: Tam giác cân

LT

Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE
a, chứng minh ΔADE là tam giác cân
b, Kẻ BH ⊥ AD ( H ∈ AD ), kẻ CK ⊥ AE ( K ∈ AE ) Chứng minh BH = CK và HK // BC
c, Gọi O là giao điểm của BH và CK. Tam giác OBC LÀ tam giác gì? Vì sao?
d, Gọi M là trung điểm BC. Chứng minh AM, BH, CK đồng quy

 

NT
29 tháng 1 2022 lúc 14:11

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó:ΔABD=ΔACE

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK; AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
CD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
HN
Xem chi tiết
LN
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết