Bài 8: Các trường hợp bằng nhau của tam giác vuông

SK

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho \(\widehat{BAD}=\widehat{CAE}\). Kẻ BH vuông góc với AD (\(H\in AD\)). Kẻ CK vuông góc với AE (\(K\in AE\)

Chứng minh :

a) BD = CE

b) BH = CK 

HN
19 tháng 5 2017 lúc 8:06

A B C D K E H

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)

\(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét hai tam giác ABD và ACE có:

\(\widehat{BAD}=\widehat{CAE}\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

Suy ra: BD = CE (hai cạnh tương ứng)

b) Xét hai tam giác BHD và CKE có:

BD = CE (cmt)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))

Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LW
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
QD
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết