Bài 8: Rút gọn biểu thức chứa căn bậc hai

H24

Cho P = \(\dfrac{4\sqrt{x}}{4\sqrt{x}+8}\)

So sánh P và |P|

NT
8 tháng 10 2023 lúc 21:19

\(P=\dfrac{4\sqrt{x}}{4\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}>=0\)

=>P=|P|

Bình luận (0)
ND
8 tháng 10 2023 lúc 21:23

Ta có : \(P=\dfrac{4\sqrt{x}}{4\sqrt{x}+8}\left(x\ge0\right)\)

\(P=\dfrac{4\sqrt{x}}{4.(\sqrt{x}+2)}\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

Vì : \(\sqrt{x}\ge0;\sqrt{x}+2\ge2\)

\(\Rightarrow P\ge0\)

Do đó : \(P=\left|P\right|\) ( vì cả hai đều dương )

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
LT
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết