Bài 8: Rút gọn biểu thức chứa căn bậc hai

CT

Thu gọn biểu thức

A=\(\sqrt{\dfrac{3\sqrt{3}}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)

B=\(\dfrac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}}\left(x\ge0,x\ne16\right)\)

NT
31 tháng 8 2022 lúc 22:19

\(A=\sqrt{\dfrac{18-3\sqrt{3}}{11}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{6}+\sqrt{2}}{2}\)

\(=\dfrac{2\sqrt{11\left(18-3\sqrt{3}\right)}-11\sqrt{6}-11\sqrt{2}}{22}\)

b: \(=\dfrac{x\sqrt{x}-2x+28-x+16-x-9\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x-9\sqrt{x}+36}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}=\dfrac{x-9}{\sqrt{x}+1}\)

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
SM
Xem chi tiết
NH
Xem chi tiết
LT
Xem chi tiết
NN
Xem chi tiết
NB
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết