Bài 2: Liên hệ giữa cung và dây

DV

cho (o;r) đg kính ab.trên tia đối của tia ba lấy đ c, qua c kẻ một đg thg cắt (o) tại e và d(e nằm giữa c và ) biết góc doe =90 độ và OC=3R

A) Tính CD,EC theo  R 

B) Chứng min CE.CD=CA.CB

NT
6 tháng 7 2021 lúc 22:56

b) Xét ΔCEB và ΔCAD có 

\(\widehat{CEB}=\widehat{CAD}\left(=180^0-\widehat{DEB}\right)\)

\(\widehat{C}\) chung

Do đó: ΔCEB\(\sim\)ΔCAD(g-g)

Suy ra: \(\dfrac{CE}{CA}=\dfrac{CB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CE\cdot CD=CA\cdot CB\)(đpcm)

Bình luận (1)
LH
6 tháng 7 2021 lúc 23:38

a)Áp dụng định lí py-ta-go có:

 \(DE=\sqrt{OD^2+OE^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)

Dễ chứng minh được: \(\Delta EBC\sim\Delta DAC\left(g.g\right)\)

\(\Rightarrow\dfrac{BC}{AC}=\dfrac{CE}{DC}\)\(\Rightarrow CD=\dfrac{AC.BC}{EC}=\dfrac{\left(OA+OC\right).\left(OC-OB\right)}{DC-DE}\)

\(\Leftrightarrow CD=\dfrac{8R^2}{DC-\sqrt{2}R}\)

\(\Leftrightarrow DC^2-\sqrt{2}R.DC-8R^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\\CD=\dfrac{R\left(-\sqrt{34}+\sqrt{2}\right)}{2}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)

Có \(EC=DC-DE=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}-\sqrt{2}R=\dfrac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
GN
Xem chi tiết
H24
Xem chi tiết
XD
Xem chi tiết
QG
Xem chi tiết