Cho đường tròn (O;R) và dây CD có trung điểm H. Trên tia đối DC lấy S . Từ S vẽ 2 tiếp tuyến SA và SB đến (O) với A,B là tiếp điểm.
a) E là giao điểm SO và AB. F là giao điểm OH và AB. Chứng minh EFHS là tứ giác nội tiếp
b) OH.OF = OE.OS
c) Cho SO=3R, CD=R√3. Tính SF
Bài 1: Cho đường tròn (O;R) và điểm S ở ngoài (O). Qua S kẻ các tiếp tuyến SA, SB với (O) trong đó A, B là các tiếp điểm. Gọi M là trung điểm của SA, BM cắt đường tròn (O) tại điểm thứ hai C
a) Chứng minh tứ giác OASB nội tiếp
b) Chứng minh MA2 = MB.MC
c) Gọi N đối xứng với C qua M. Chứng minh góc CSA = góc MBS
d) Chứng minh NO là tia phân giác của góc ANB
Cho đường tròn tâm (O). Từ điểm S ở ngoài đường tròn (O) kẻ các tiếp tuyến SA và SB với (O) (A, B là các tiếp điểm). Kẻ cát tuyến SCD không đi qua tâm O (C nằm giữa S và D). Gọi I là trung điểm của CD.a/ Chứng minh các điểm S, A, I, O, B cùng nằm trên một đường tròn.b/ Chứng minh IS là đường phân giác của góc AIB.c/ Gọi M là giao điểm của hai đường thẳng SO và AB; N là giao điểm của hai đường thẳng SD và AB. Chứng minh MC.ND = NC.MD
Từ 1 điểm S nằm ngoài đường tròn tâm O vẽ 2 tiếp tuyến SA, SB
a/ Chứng minh tứ giác SAOB nội tiếp đường tròn
b/ Vẽ cát tuyến SEF. Chứng minh SA2=SB2=SE.SF
c/ Kẻ BD//EF , AD cắt EF tại K. Chứng minh tứ giác SADB nội tiếp
Giúp mik giải vs. Mai mik kt 1 tiết r
Cho đường tròn O bán kính R và 2 điểm A,B thuộc đường tròn sao cho góc AOB =60°. vẽ các tiếp tuyến tại A và B với đường tròn O cắt nhau tại S.
a. Chứng minh tứ giác OASB nội tiếp
b. Qua S kẻ cát tuyến SMN ( M nằm giữa S và N). chứng minh SM.SN=SB^2
Giúp mình vs
GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN GẤP TT
cho đường tròn (O; R) đường kính BC, điểm A nằm ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD và AE với đường tròn (D, E là tiếp điếm).
a)Chứng minh: Tứ giác ADOE nội tiếp và xác định tâm I của đường tròn
b. Chứng minh: tam giác ADE đều.
c. Vẽ DH vuông góc CE (H thuộc CE). Gọi P là trung điểm của DH, CP cắt đường tròn tại Q (Q khác C). AQ cắt đường tròn tâm O tại M. Chứng minh: AQ. AM = 3R2.
d. Chứng minh: AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,
BE, CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF nội tiếp. b) Chứng minh BH . EC = BC. DH
c) Gọi M là trung điểm của BC. Tiếp tuyến của đường tròn tại B cắt OM tại P.
Chứng minh rằng DAP MAO =
Cho đường tròn tâm O , bán kính R . Từ điểm C nằm ngoài tròn kế tiếp tuyến CA , CB và cát tuyến CMN với đường tròn (O) (A , B là hai tiếp điểm , M nằm giữa C và N ) . Gọi H là giao điểm của CO và AB.
a. Cm tứ giác AOBC nội tiếp.
b. Cmr : CH . CO = CM . CN
c.Tiếp tuyến tại M cuả đường tròn (O) cắt CA , CB theo thứ tự tại E và F.Đường vuông góc với CO tại O cắt CA, CB theo thứ tự là P,Q. Cm : ∠POE =∠OFQ
d. Cmr : PE + QF ≥ PQ
Câu 4. ( 6,0 điểm ) Cho đường tròn tâm O bán kính R. Lấy một điểm S sao cho SO = 2R . Từ S kẻ các tiếp tuyến SA và SB với đường tròn ( A , B là các tiếp điểm ) .
a ) Chứng minh rằng tứ giác SAOB nội tiếp .
b ) Chứng minh rằng tam giác SAB là tam giác đều .
c ) Tính diện tích hình phẳng giới hạn bởi 2 tiếp tuyến SA , SB và cung nhỏ AB của đường tròn ( 0 )