Cho A= x3 + y3 - 3(x + y) + 2020. Tính giá trị biểu thức A với:
x = \(\sqrt[3]{9+4\sqrt{5}}\) + \(\sqrt[3]{9-4\sqrt{5}}\) và y=\(\sqrt[3]{3+2\sqrt{2}}\) + \(\sqrt[3]{3+2\sqrt{2}}\)
Các bạn giúp mk nhanh nhé mk đang cần gấp
Tìm tập hợp các giá trị \(x\) thỏa mãn điều kiện sau và biểu diễn tập hợp đó trên trục số :
a) \(\sqrt[3]{x}\ge2\)
b) \(\sqrt[3]{x}\le-1,5\)
Cho 3 số thực x, y, z đôi một khác nhau thỏa mãn : \(\left(y-z\right)\sqrt[3]{1-x^3}+\left(z-x\right)\sqrt[3]{1-y^3}+\left(x+y\right)\sqrt[3]{1-z^3}=0\)
CMR : \(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)=\left(1-xyz\right)^3\)
Thầy mình gợi ý áp dụng t/c: Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc đc thế này
\(\left(y-z\right)^3\left(1-x^3\right)+\left(z-x\right)^3\left(1-y^3\right)+\left(x-y\right)^3\left(1-z^3\right)=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)chưa biết làm thế nào cả
Cho a, b, c, x, y, z thoả mãn: x + y + z = 1 và \(\dfrac{a}{x^3}=\dfrac{b}{y^3}=\dfrac{c}{z^3}\). Chứng minh rằng: \(\sqrt[3]{\dfrac{a}{x^2}+\dfrac{b}{y^2}+\dfrac{c}{z^2}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
B1
a, Cho hai số dương x,y thỏa mãn x+y=\(3\sqrt{xy}\). Tính tỉ số \(\frac{x}{y}\)
b, Tính P =\(u^8+\frac{1}{u^8}\)biết u=\(\sqrt{2}+1\)
B2
Giải phương trình \(x^4+\left(x-1\right)\left(x^2-2\left(x-1\right)\right)=0\)
GIÚP MÌNH NỮA NHA> THANKS
1) Cho x,y,z > 0 ; x.y.z =1 . CMR :
\(\sqrt{\dfrac{1+x^3+y^3}{x.y}}+\sqrt{\dfrac{1+y^3+z^3}{y.z}}+\sqrt{\dfrac{1+z^3+x^3}{x.z}}\)≥ 3\(\sqrt{3}\)
\(\dfrac{x+y}{\sqrt[3]{x}+\sqrt[3]{y}}+\dfrac{x-y}{\sqrt[3]{x}-\sqrt[3]{y}}\)
rút gọn
cho x =\(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
y =\(\sqrt[3]{17+2\sqrt{2}}+\sqrt[3]{17-2\sqrt{2}}\)
Tính M=\(x^3+y^3-3\left(x+y\right)+2004\)
B1; Cho biết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\).Chứng minh rằng
a+b+c=abc
B2; Cho 3 số x,y,z thỏa mãn x,y,z=1. CMR:
\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)
B3: Giải phương trình
\(\left(x^2-x+1\right)^2+5x^4=6x^2\left(x^2-x+1\right)\)
Làm Ơn Giúp với