cho hình thang cân ABCD(AD//BC),AD<BC. Gọi O là giao điểm 2 đường chéo
a) CM tam giác ADC = tám giác DBA
b) OA=OD và OB=OC
Cho hình thang cân ABCD có AB // CD và AB < CD. Kẻ đường cao AH, BK của hình thang ABCD (H, K thuộc CD).
1) Chứng minh tam giác ADH bằng tam giác BCK.
2) Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3) Giả sử BK=AB+CD/2. Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang ABCD ( AB//CD) có CD = AD + BC. Gọi K là
giao điểm của tia phân giác góc A với đáy CD. Chứng minh:
a) AD = DK
b) Tam giác BKC cân tại C
c) BK là tia phân giác góc B
Cho hình thang cân ABCD (AD // BC). O là giao điểm của hai đường chéo AC và BD. Chứng minh các tam giác OAB và OCD cân
Cho hình thang cân ABCD (AD // BC, AD < BC). Gọi O là giao điểm của hai đường chéo. Gọi M là trung điểm của BC. Chứng minh OM vuông góc AD.
Cho hình thang cân ABCD (AB//CD, AB<CD)AD cắt BC tại O
a) CMR tam giác OAB cân
b)Gọi I,J lần lượt là trung điểm của AB và CD. CMR ba điểm I,J,O thẳng hàng
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 3.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 4. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 5. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Cho hình thang cân ABCD có AD // BC, AB = DC. gọi O là giao điểm 2 đường chéo AC và BD . C/m OA = OC OB = OD
Cho hình thang cân ABCD có hai đáy AB// CD. Gọi I là giao điểm của 2 đường chéo AC và BD . Đường trung trực của AD và DI cắt nhau tại O. Chứng minh rằng OI vuông góc với BC.
#hinh_thang_can_ABCD