Trong sách nó vẽ dài dòng qua mình rút gọn lại .
Lời giải ...........................
Ta có :
\(TV\) // \(RS\)
\(TZ=ZR\) và \(VK=KS\)
\(\Rightarrow ZK=\dfrac{1}{2}\left(TV+RS\right)\)
\(\Rightarrow TV+RS=ZK:\dfrac{1}{2}\)
\(\Rightarrow TV+RS=2ZK\left(đpcm\right)\)
Kẻ ZY // TV (Y thuộc RV )
- Xét tam giác RTV CÓ :
ZY // TV
Z là trung điểm TR
Suy ra Y là trung điểm RV
Suy ra 2ZY = TV (*)
- Xét tam giác VRS có :
Y là trung điểm RV
K là trung điểm VS
Suy ra YK // RS
Suy ra 2YK = RS (**)
- Vì ZY // RS và YK // RS
Suy ra Z , Y , K thẳng hàng
Suy ra ZY + YK = ZK (***)
Từ (*) , (**) , (***)
Suy ra TV + RS = 2ZY + 2YK = 2(ZY +YK ) = 2ZK
Theo tính chất đường trung binh của hình thang:
-[TV + RS] :2=ZK
-Hay 2ZK=TV + RS