Bài 3: Hình thang cân

TN

cho hình thang cân ABCD có ab//cd gọi o là giao điểm của 2 đường chéo gọi E là giao điểm của 2 đường thẳng chứa 2 cạnh bên . chứng minh rằng chứng minh EO là đường trung trực của AB

H24
24 tháng 8 2023 lúc 20:02

Để chứng minh rằng EO là đường trung trực của AB trong hình thang cân ABCD, ta cần sử dụng một số kiến thức về hình học và các định lý liên quan.

Đầu tiên, do hình thang ABCD là hình thang cân, ta có AB // CD. Điều này có nghĩa là tam giác ABE và CDE là hai tam giác đồng dạng (có các cặp góc tương đồng và các cặp cạnh tương tỉ).

Tiếp theo, ta biết rằng đường chéo AC của hình thang cân là đường trung tuyến, có nghĩa là nó chia đôi đường chéo BD. Do đó, ta có AO = OC và BO = OD.

Giả sử EO không phải là đường trung trực của AB. Khi đó, ta có hai trường hợp xảy ra:

Trường hợp 1: EO nằm bên trong tam giác ABE. Trong trường hợp này, ta có EO cắt AB tại một điểm F. Vì tam giác ABE và CDE đồng dạng, nên ta cũng có EF // CD. Tuy nhiên, điều này mâu thuẫn với giả thiết AB // CD. Vậy trường hợp này không xảy ra.

Trường hợp 2: EO nằm bên ngoài tam giác ABE. Trong trường hợp này, ta có EO cắt AB tại một điểm F. Vì tam giác ABE và CDE đồng dạng, nên ta cũng có EF // CD. Tuy nhiên, điều này cũng mâu thuẫn với giả thiết AB // CD. Vậy trường hợp này cũng không xảy ra.

Vì hai trường hợp trên không xảy ra, ta kết luận rằng EO phải là đường trung trực của AB trong hình thang cân ABCD.

Hy vọng rằng giải thích trên đã giúp bạn hiểu và chứng minh được rằng EO là đường trung trực của AB trong hình thang cân ABCD.

Bình luận (0)
NT
24 tháng 8 2023 lúc 20:03

Xét ΔABD và ΔBAC có

AB chung

BD=AC

AD=BC

=>ΔABD=ΔBAC
=>góc OAB=góc OBA

=>OA=OB

Xét ΔEDC có AB//DC

nên EA/AD=EB/BC

mà AD=BC

nên EA=EB

mà OA=OB

nên EO là trung trực của AB

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
PO
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết