Hình vẽ:
Giải:
Gọi E là giao điểm của AC và BD.
Theo đề ra, ta có:
\(\widehat{ACD}=\widehat{BDC}\)
\(\Leftrightarrow\Delta EDC\) cân tại E
\(\Leftrightarrow ED=EC\) (1)
Mà AB//CD (gt)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{EAB}=\widehat{ACD}\\\widehat{EBA}=\widehat{BDC}\end{matrix}\right.\) (Các góc so le trong)
Lại có: \(\widehat{ACD}=\widehat{BDC}\) (gt)
\(\Leftrightarrow\widehat{EAB}=\widehat{EBA}\)
\(\Leftrightarrow\Delta EAB\) cân tại E
\(\Leftrightarrow EB=EA\) (2)
Lấy (1) cộng (2), ta được:
\(ED+EB=EC+EA\)
Hay \(BD=AC\)
\(\Leftrightarrow ABCD\) là hình thang cân (Vì có hai đường chéo bằng nhau)
\(\Rightarrowđpcm\)
Chúc bạn học tốt!