Bài 3: Đồ thị của hàm số y = ax + b ( a khác 0)

NG

Cho hàm số \(y=\left(2m^2-4m+7\right)x+3m^2-m-1\). Chứng minh hàm số luôn đồng biến R

AH
9 tháng 9 2017 lúc 8:57

Lời giải:

Xét \(x_1,x_2\in\mathbb{R}\), giả sử \(x_1< x_2\). Ta có:

\(f(x_1)-f(x_2)=(2m^2-2m+7)x_1+3m^2-m-1-[(2m^2-4m+7)x_2+3m^2-m-1]\)

\(\Leftrightarrow f(x_1)-f(x_2)=(2m^2-2m+7)(x_1-x_2)\)

Ta thấy \(2m^2-2m+7=m^2+(m-1)^2+6\geq 6>0\) với mọi \(m\in\mathbb{R}\), mà \(x_1< x_2\)

Do đó, \((2m^2-2m+7)(x_1-x_2)< 0\Leftrightarrow f(x_1)< f(x_2)\)

Như vậy, với \(x_1< x_2\Rightarrow f(x_1) < f(x_2)\), do đó hàm số đồng biến trên R

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
GT
Xem chi tiết
CX
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
DK
Xem chi tiết