\(P=\frac{x^2-2xy+y^2+2xy}{x-y}=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\ge2\sqrt{\frac{2\left(x-y\right)}{x-y}}=2\sqrt{2}\)
\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(\left\{{}\begin{matrix}xy=1\\x-y=\frac{2}{x-y}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{\sqrt{6}+\sqrt{2}}{2}\\y=\frac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
Đúng 1
Bình luận (2)
Cho em hỏi: nghiệm \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{2}-\sqrt{6}}{2}\\y=\dfrac{-\sqrt{2}-\sqrt{6}}{2}\end{matrix}\right.\)
có đúng ko ạ?
Đúng 0
Bình luận (1)