cho tam giác abc có 3 góc nhọn ( AB < AC) nội tiếp đường tròn tâm o. kẻ đường thẳng d là tiếp tuyến tại A của đường tròn tâm o . Gọi d' là đường thẳng đi qua B và song song với d; d' cắt các đường thẳng Ao , AC lần lượt tại E, D. Kẻ À là đường cao của tam giác ABC ( F thuộc BC )
a) Chướng minh rằng tứ giác ABFE nội tiếp
b) chướng minh rằng AB2 = AD * AC
c) Gọi M,N lần lượt là trung diểm của AB, BC . CMR: MN vuông góc với EF
Giúp mình với
Cho đường tròn (O,3cm) và điểm S cách O một khoảng bằng 5cm. Qua S kẻ tiếp tuyến SB với đường tròn (O) (B là tiếp điểm). Qua B kẻ đường thẳng vuông góc với OS cắt OS và (O) lần lượt tại K, C. a, Tính BC b, Chứng minh SC là tiếp tuyến của (O) c, Lấy N là điểm bất kì trên cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn cắt SB, SC lần lượt tại E và F. Tính chu vi tam giác SEF
Cho góc xOy và 1 đường tròn tâm I tiếp xúc với 2 cạnh của góc tại A,B . QUa A kẻ đường thẳng song song với OB giao đường tròn tâm I tại C . Gọi K là trung điểm OB . AK giao đường tròn tâm I tại E
1.\(KO^2=KA.KE\)
2. \(\Delta KAO\sim\Delta KOE\)
3. C , O , E thẳng hàng
4. Gọi AB giao OC tại D cm \(\frac{OE}{OC}=\frac{DE}{DC}\)
Cho đường (O), từ điểm A nằm ngoài đường tròn (O) kế hai tiếp tuyến AB, AC (B, C là các tiếp điểm). a) Chứng minh tứ giác OBAC nội tiếp. b) Chứng minh OA vương BC tại H. c) Trên đoạn thẳng BH lấy điểm D, kẻ đường thẳng vuông góc với OD tại D cắt các tiếp tuyến AB, AC lần lượt tại E, F. Chứng minh DE = EF
Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếng tuyến AM và AN tới đường tròn (M,N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O;R) tại B và C (AB<AC). Gọi I là trung điểm của BC.
Đường thẳng đi qua B, song song với AM, cắt MN tại E. CMR: IE song song MC
Cho tam giác ABC cân tại B có AB < AC nội tiếp trong đường tròn (O). Gọi (d) là tiếp tuyến với đường tròn tại điểm A. Một đường thẳng song song với (d) cắt các cạnh AB, AC và đường thẳng BC lần lượt tại D, E và I. a) Chứng minh rằng số do hai cung nhỏ BA và BC bằng nhau. b) Chứng minh rằng góc ABC = AED. c) Chứng minh tứ giác BCED nội tiếp. d) Chứng minh rằng IB.IC =
Cho (O; R) và một điểm A ở ngoài đường tròn . Từ A kẻ hai tiếp tuyến AP và AQ với (O) (P; Q là các tiếp điểm).Qua P kẻ đường thẳng song song với AQ cắt (O) tại M . Gọi N là giao điểm thứ hai của đường thẳng AM và đường tròn (O). 1) Cm tứ giác APOQ nội tiếp 2) Cm : AP2 = AM . AN 3) Kẻ đường kính QS của đường tròn (O). Gọi H là giao điểm của NS và PQ, I là giao điểm của QS và MN. a) Cm NS là tia phân giác của góc PNM b) Cm HI // PM
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB với đường tròn (O). Qua điểm M kẻ cát tuyến MCD với đường tròn (O), tức là đường thẳng đi qua điểm M và cắt đường tròn tại hai điểm là C, D). Gọi I là trung điểm của dây CD, Khi đó MAOIB có là ngũ giác nội tiếp hay không ?