Bài 5: Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

HP

Cho đoạn thẳng BC, H là trùn điểm của đoạn thẳng BC. Qua H kẻ đường thẳng d vuông góc với BC. Trên đường thảng d lấy điểm A. Chứng minh tam giác AHB= tam giác AHC và AH là tia phân giác của góc BAC

H24
20 tháng 8 2023 lúc 9:34

Để chứng minh rằng tam giác AHB = tam giác AHC và AH là tia phân giác của góc BAC, chúng ta cần sử dụng các định lý và quy tắc trong hình học. Để bắt đầu, ta đã biết: - H là trung điểm của đoạn thẳng BC - Đường thẳng d là đường thẳng góc với BC Vì H là trung điểm của BC nên ta có: AH = BH = HC (để chứng minh, chỉ cần sử dụng quy tắc về trung điểm) Giả sử ta kẻ đường thẳng HE đi qua H và góc với AB. Khi đó, ta có: - HE = HC (do AHB và AHC là tam giác cân) - AHE = 90 độ (do đường thẳng góc với AB) Từ đó, ta suy ra: - Tam giác AHB = tam giác HEB ( do cận AH = cận DH và cận BH = cận EH) - Tam giác AHC = tam giác HEC (do cận AH = cận CH và cận HC = cận EC) Vậy tam giác AHB = tam giác AHC. Ngoài ra, vì cạnh AH = cạnh HC nên AH là tia phân giác của góc BAC. Do đó, ta đã chứng minh được rằng tam giác AHB = tam giác AHC và AH là tia phân giác của góc BAC.

Bình luận (0)
NT
20 tháng 8 2023 lúc 11:05

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AH chung

HB=HC

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
TV
Xem chi tiết
ND
Xem chi tiết
AA
Xem chi tiết
BG
Xem chi tiết
TM
Xem chi tiết