cho abc khác 0 và \(\dfrac{a-b+c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+c-b}{b}\) Tính P\(=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\) giúp mik nha! help me =='
cho a+b+c+d khác 0 vàti\(\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}=\dfrac{a+b+c-d}{d}P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{c}{d}\right)\left(1+\dfrac{a}{d}\right)\)tính P
giúp mk với ạ , xin cảm ơn
Cho \(\dfrac{b+c-5}{a}=\dfrac{a+c+2}{b}=\dfrac{a+b+3}{c}=\dfrac{1}{a+b+c}\left(a,b,c\ne0,a+b+c\ne0\right)\)
Tính \(\left(a-3b\right)\left(b-c\right)\left(3c-a\right)\)
Ai giúp mik đi, mik cho 5 coin
1. Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\). Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
2. Cho \(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}\). Chứng minh rằng \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
CMR : \(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}\right)^2\) = \(\dfrac{a}{d}\)
Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)
Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\)
Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
Câu 5: Cho 4 số a, b, c, d đều ≠ 0 thoả mãn \(b^2=ac\), \(c^2=bd\), \(b^3+27c^3+8d^3\) ≠ 0. Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)
Câu 6: Cho \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức A = \(2016x+y^{2017}+x^{2017}\)
Câu 7: Tìm giá trị nhỏ nhất của biểu thức A biết: \(A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+zy+zx-2000\right|\)
Câu 8: Tìm 3 số a, b, c biết: \(\dfrac{3a-2b}{4}=\dfrac{2c-4a}{3}=\dfrac{4b-3c}{2}\) và \(a+b+c=18\).
Cho\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) với b+c+d khác 0.
Chứng minh:\(\dfrac{a^3+b^3+c^3}{b^3+c^3-d^3}=\left(\dfrac{a+d-c}{b+c-d}\right)^3\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{m}{n}\)
CMR \(\dfrac{a^3+c^3+m^3}{b^3-d^3-n^3}\) = \(\left(\dfrac{a+c-m}{b+d-m}\right)^3\)
mọi người ơi giup mik với ai làm đc mik tick cho