\(\overrightarrow{BC}\cdot\overrightarrow{BA}=24\)
=>\(BC\cdot BA\cdot cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)=24\)
=>cosB=4/5
=>\(\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}=\dfrac{4}{5}\)
=>\(\dfrac{6^2+5^2-AC^2}{2\cdot6\cdot5}=\dfrac{4}{5}\)
=>36+25-AC^2=4*2*6=8*6=48
=>AC^2=13
=>AC=căn13(cm)
\(BM=\sqrt{\dfrac{BA^2+BC^2}{2}-\dfrac{AC^2}{4}}=\dfrac{\sqrt{109}}{2}\)