Bài 1: Căn bậc hai

TH

Cho biểu thức P= \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-1}\) với x ≥ 0, x ≠ 1)

a. Rút gọn P

b. CM: P < \(\dfrac{1}{3}\) với x ≥ 0, x ≠ 1

AH
24 tháng 7 2018 lúc 17:23

Lời giải:

\(P=\frac{x+2}{(\sqrt{x})^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(\frac{x+2}{\sqrt{x^3}-1}+\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\sqrt{x^3}-1}+\frac{x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2+x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}=\frac{2x+1}{\sqrt{x^3}-1}-\frac{x+\sqrt{x}+1}{\sqrt{x^3}-1}\)

\(=\frac{2x+1-(x+\sqrt{x})}{\sqrt{x^3}-1}=\frac{x-\sqrt{x}}{\sqrt{x^3}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b) \(P-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{2\sqrt{x}-(x+1)}{3(x+\sqrt{x}+1)}\)

\(=\frac{-(\sqrt{x}-1)^2}{3(x+\sqrt{x}+1)}\)

Với \(x\neq 1, x\geq 0\Rightarrow -(\sqrt{x}-1)^2< 0; x+\sqrt{x}+1>0\)

Do đó: \(P-\frac{1}{3}< 0\Rightarrow P< \frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
MS
Xem chi tiết
CQ
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
PH
Xem chi tiết