Ôn tập chương 1: Căn bậc hai. Căn bậc ba

TT

Cho biết \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\) (\(a\ge1\); \(b\ge1\)). Chứng minh a+b=ab

TQ
29 tháng 4 2019 lúc 13:40

Ta có \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\Leftrightarrow a+b=a-1+2\sqrt{\left(a-1\right)\left(b-1\right)}+b-1\Leftrightarrow2=2\sqrt{\left(a-1\right)\left(b-1\right)}\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\Leftrightarrow ab-a-b+1=1\Leftrightarrow a+b=ab\)Vậy nếu \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\) thì a+b=ab

Bình luận (0)
NT
29 tháng 4 2019 lúc 14:19

\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\left(a\ge1;b\ge1\right)\\ \Leftrightarrow a+b=a-1+b-1+2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow a+b=a+b-2+2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow2=2\sqrt{\left(a-1\right)\left(b-1\right)}\\ \Leftrightarrow1=\sqrt{a-1}\sqrt{b-1}\\ \Leftrightarrow1=\left(a-1\right)\left(b-1\right)\\ \Leftrightarrow1=ab-a-b-1\\ \Leftrightarrow ab=a+b\)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
LH
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
LH
Xem chi tiết
LM
Xem chi tiết
SK
Xem chi tiết
CT
Xem chi tiết
NH
Xem chi tiết