mà \(\sqrt{5}>2\) nên \(\sqrt{x+4}+\sqrt{x-1}>2\)
Vậy, không tồn tại \(x\) thỏa mãn \(\sqrt{x+4}+\sqrt{x-1}=2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
mà \(\sqrt{5}>2\) nên \(\sqrt{x+4}+\sqrt{x-1}>2\)
Vậy, không tồn tại \(x\) thỏa mãn \(\sqrt{x+4}+\sqrt{x-1}=2\)
Cho biểu thức A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (\(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1x}\))
1.Tìm điều kiện xác định của biểu thức A.
2.Rút gọn A.
3.Tính giá trị biểu thức A khi x = \(\dfrac{1}{6-2\sqrt{5}}\).
4.Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
5.Tìm giá trị của x để biểu thức A bằng -3.
6.Tìm giá trị của x để biểu thức A nhỏ hơn -1.
7.Tìm giá trị của x để biểu thức A lớn hơn \(\dfrac{-2}{\sqrt{x}+1}\)
Cho biểu thức:
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}-5};B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\), \(x\ge0,x\ne1,x\ne25.\)
a) Chứng minh rằng \(B=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\).
b) Tính giá trị của A khi x = 49.
c) Tìm giá trị của x để B > 1.
d) So sánh \(C=\left(A.B+\dfrac{x-5}{\sqrt{x}-5}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}}\) với 3 \(\left(x>0,x\ne1,x\ne25\right)\)
a) Chứng minh :
\(x-4\sqrt{x-4}=\left(\sqrt{x-4}-2\right)^2\)
b) Tìm điều kiện xác định và rút gọn biểu thức :
\(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
A=\(2\sqrt{12}-\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
B=\(\dfrac{x}{x-16}+\dfrac{2}{\sqrt{x}-4}+\dfrac{2}{\sqrt{x}+4}\)( Với x\(\ge\)0; x\(\ne\)16)
a) Rút gọn 2 biểu thức A, B
b) Tìm giá trị của x để B\(-\dfrac{1}{2}\)A=0
bài 1: rút gọn biểu thức
a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)
b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)
c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)
bài 2: giải phương trình
c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
bài 3 a)tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\frac{-5}{2x+1}}\)
b) \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)
bài 4 cho biểu thức Q= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\) với x>0 và x khác 1
a) rút gọn Q b) tính giá trị của Q khi x= 9
bài 5 :cho biểu thức P= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
a) tìm điều kiện của x để biểu thức P xác định
b) rút gọn P
c) tìm giá trị của x để P< 0
Cho biểu thức sau:
A= \(2.\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x^2-x}\)
a, tìm điều kiện và rút gọn A
b, tìm x để A = \(\sqrt{2021}\)
1.Cho biểu thức: B=\(\left(\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}\right)\).\(\dfrac{3-\sqrt{x}}{x-1}\) với x>0 và x≠1
a) Rút gọn B
b) Tìm x để B=-1
2.Cho biểu thức: A=\(\dfrac{\sqrt{x}}{1-\sqrt{x}}\)-\(\dfrac{\sqrt{x}}{1+\sqrt{x}}\)+\(\dfrac{3-\sqrt{x}}{x-1}\) (x≥0; x≠1)
a) Rút gọn A
b) Tìm x để B= -1
3. Cho biểu thức: M=\(\dfrac{x-5}{\sqrt{x}-5}\)-\(\dfrac{x+6\sqrt{x+5}}{\sqrt{x}+5}\)
a) Tìm điều kiện của x để biểu thức M có nghĩa.
b) Rút gọn biểu thức M
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
cho biểu thức
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a,Tính giá trị biểu thức B khi x=36
b,Tìm x để B<\(\dfrac{1}{2}\)
c,Rút gọn A
d, Tìm giá trị x nguyên nhỏ nhất để biểu thức P=A.B nguyên