Ta có :
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)( Vì a+b+c=1)
Do đó :
\(\left(x+y+z\right)^2=\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)( Vì \(a^2+b^2+c^2=1\) ).
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^2.\)
Đúng 0
Bình luận (0)