Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh các tứ giác BDHF, BCEF nội tiếp
b) Chứng minh FC là tia phân giác của góc EFD
c) Hai đường thẳng EF và BC cắt nhau tại M . Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K . Chứng minh tam giác HIK cân
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,
BE, CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF nội tiếp. b) Chứng minh BH . EC = BC. DH
c) Gọi M là trung điểm của BC. Tiếp tuyến của đường tròn tại B cắt OM tại P.
Chứng minh rằng DAP MAO =
Cho tam giác ABC nhọn AB<AC, nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tứ giác ABDE nội tiếp?
b) Đường kính CK của đường tròn (O) cắt DE tại M. Chứng minh CF.CK=CA.CB
c) Chứng minh tứ giác AKME nội tiếp và DE vuông góc CK tại M?
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn tâm O bán kính R, 3 đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh các tứ giác AEHF, AEDB nội tiếp.
b) Vẽ đường kính AK của đường tròn tâm O.
Chứng minh AB . AC = 2R . AD
c) BE cắt (O) ở Q, CF cắt (O) tại P.
Chứng minh AP = AQ Và H đối xứng với P qua AB.
d) Chứng minh OC vuông góc với PE.
Các bạn giúp mình với, tối nay mình phải nộp cho thầy rồi
cho tam giác abc nhọn ab lớn hơn ac nội tiếp đường tròn đường kính ad đường cao cf và bg cắt nhau tại h kẻ oi vuông góc bc a) chứng minh tứ giác cgfb nội tiếp đường tròn b)chứng minh tam giác acd đồng dạng tam giác cfb c)chứng minh tứ giác chbd là hình bình hành và cd.cg=bd.bf d) chứng minh i,h,d thẳng hàng
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
\(Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF\)
Cho △ ABC (AB<AC) có 3 góc nhọn nội tiếp (O;R) . H là giao điểm của 3 đường cao AD,BE,CF của △ ABC
a)c/m AEHF nội tiếp; AEDB là các tứ giác nội tiếp
b) vẽ đường kính AK của (O)
C/m AB.AC=AK.AD
c) Chứng minh : OC vuông DE