Bài 1: Căn bậc hai

BM

Cho a,b,c > 0 thỏa mãn abc = 1. Chứng minh rằng: \(\frac{\sqrt{a}}{2+b\sqrt{a}}+\frac{\sqrt{b}}{2+c\sqrt{b}}+\frac{\sqrt{c}}{2+a\sqrt{c}}\ge1\)

AH
28 tháng 5 2020 lúc 10:30

Lời giải:
Do $abc=1$ nên đặt:

\((\sqrt{a}, \sqrt{b}, \sqrt{c})=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})\) với $x,y,z>0$

Khi đó, bài toán trở thành: Cho $x,y,z>0$. CMR:

\(\frac{xz^2}{2z^2y+xy^2}+\frac{yx^2}{2x^2z+yz^2}+\frac{zy^2}{2y^2x+zx^2}\geq 1\)

Thật vậy, áp dụng BĐT Cauchy-Schwarz:

\(\frac{xz^2}{2z^2y+xy^2}+\frac{yx^2}{2x^2z+yz^2}+\frac{zy^2}{2y^2x+zx^2}=\frac{(xz)^2}{2xyz^2+(xy)^2}+\frac{(xy)^2}{2x^2yz+(yz)^2}+\frac{(yz)^2}{2xy^2z+(xz)^2}\)

\(\geq \frac{(xz+xy+yz)^2}{2xyz^2+(xy)^2+2x^2yz+(yz)^2+2xy^2z+(xz)^2}=\frac{(xy+yz+xz)^2}{(xy+yz+xz)^2}=1\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$

Bình luận (0)
BM
28 tháng 5 2020 lúc 16:22

thank youhaha

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
KB
Xem chi tiết
AJ
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
Xem chi tiết
LQ
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết