Bài 1: Căn bậc hai

H24

Bài 1: P=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a,Rút gọn P
b,Chứng minh rằng P>0

Bài 2: P=\(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a,Rút gọn P
b,Tính \(\sqrt{P}\) khi x= 5+\(2\sqrt{3}\)
(hiu hiu...phiền các bạn giúp mk vs ạ)...

HB
13 tháng 8 2019 lúc 10:07

bài 1
P=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right)\)

=\(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{...}-\frac{\left(x+\sqrt{x}+1\right)}{...}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{2}{\sqrt{x}-1}\)

=\(\frac{2}{x+\sqrt{x}+1}\)

P>0 dựa vào dkxd

Bình luận (0)
HB
13 tháng 8 2019 lúc 10:28

b giống a

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
T8
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết