\(\dfrac{a}{a^4+b^2}+\dfrac{b}{a^2+b^4}\le\dfrac{a}{2\sqrt{a^4b^2}}+\dfrac{b}{2\sqrt{a^2b^4}}=\dfrac{a}{2a^2b}+\dfrac{b}{2ab^2}=\dfrac{1}{ab}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=1\)
Đúng 4
Bình luận (0)