LA

cho P=\(\dfrac{4}{a^2+b^2}+\dfrac{1}{ab}\),với a;b>0 và a+b=\(\sqrt{2}\). chứng minh P≥(\(\sqrt{2}+1\))\(^2\)

NA
4 tháng 4 2023 lúc 20:39

\(P=\dfrac{4}{a^2+b^2}+\dfrac{1}{ab}=\dfrac{4}{\left(a+b\right)^2-2ab}+\dfrac{1}{ab}=\dfrac{4}{2-2ab}+\dfrac{1}{ab}=\dfrac{2}{1-ab}+\dfrac{1}{ab}\)Áp dụng BĐT Bunhiacopxki dạng phân thức ta có:

\(\dfrac{2}{1-ab}+\dfrac{1}{ab}\ge\dfrac{\left(\sqrt{2}+1\right)^2}{1-ab+ab}=\left(\sqrt{2}+1\right)^2\) hay \(P\ge\left(\sqrt{2}+1\right)^2\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{2}}{1-ab}=\dfrac{1}{ab};a+b=\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt{2}\\ab=\dfrac{1}{\sqrt{2}+1}\end{matrix}\right.\Leftrightarrow\left(a;b\right)=\left(1;-1+\sqrt{2}\right),\left(-1+\sqrt{2};1\right)\)

Bình luận (0)

Các câu hỏi tương tự
WS
Xem chi tiết
H24
Xem chi tiết
DY
Xem chi tiết
KF
Xem chi tiết
HM
Xem chi tiết
LL
Xem chi tiết
MV
Xem chi tiết
LT
Xem chi tiết
HN
Xem chi tiết