TN

Cho A =7 + 72 + 73 + ... + 7119 + 7120. Chứng minh chia hết cho 57

H24
28 tháng 12 2022 lúc 12:17

\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)

Bình luận (0)
KH
28 tháng 12 2024 lúc 18:36

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BL
Xem chi tiết
HH
Xem chi tiết
TO
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết