H24

Câu 3: Cho A = 7 + 72 + 73 + ... + 7119 + 7120. Chứng minh rằng A chia hết cho 57.

LL
23 tháng 12 2021 lúc 21:07

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)

Bình luận (0)
AH
23 tháng 12 2021 lúc 21:09

Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$

$=7.57+7^4.57+...+7^{118}.57$

$=57(7+7^4+...+7^{118})\vdots 57$ 

Ta có đpcm.

Bình luận (1)
KH
28 tháng 12 2024 lúc 18:36

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

 

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết
TO
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
VT
Xem chi tiết
DN
Xem chi tiết
AN
Xem chi tiết