Ôn tập cuối năm môn Đại số

H24

Câu 1 : chứng minh rằng : cot x-tanx = 2cot2x
Câu 2 : chứng minh rằng : \(\frac{cos^2x-sin^2x}{1+sin2x}=\frac{1-tanx}{1+tanx}\)

NL
8 tháng 6 2020 lúc 15:04

\(cotx-tanx=\frac{cosx}{sinx}-\frac{sinx}{cosx}=\frac{cos^2x-sin^2x}{sinx.cosx}=\frac{cos2x}{\frac{1}{2}sin2x}=2cot2x\)

\(\frac{cos^2x-sin^2x}{1+sin2x}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{\left(cosx+sinx\right)^2}=\frac{cosx-sinx}{cosx+sinx}\)

\(=\frac{\frac{cosx}{cosx}-\frac{sinx}{cosx}}{\frac{cosx}{cosx}+\frac{sinx}{cosx}}=\frac{1-tanx}{1+tanx}\)

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
NV
Xem chi tiết
AH
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết