Bài 1: Căn bậc hai

NT

Bài 1 Tìm x để phương tình xđ (a)\(\sqrt{\frac{2019}{x-2020}}\) (b)\(\sqrt{\frac{5}{x^2}}\) (c)\(\sqrt{\frac{-1}{3x+5}}\) (d)\(\sqrt{\frac{x-3}{1-x}}\) Bài 2 Giải phương trình (a)\(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (b)\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\) (c)\(3\sqrt{2x+1}-6>9\) (d)\(\frac{\sqrt{x}+1}{3}>4\)

NL
26 tháng 9 2019 lúc 0:03

ĐKXĐ:

a/ \(x-2020>0\Rightarrow x>2020\)

b/ \(x\ne0\)

c/ \(3x+5< 0\Rightarrow x< -\frac{5}{3}\)

d/ \(\frac{x-3}{1-x}\ge0\Rightarrow1< x\le3\)

Bài 2: ĐKXĐ tự tìm

a/ \(2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\Rightarrow\sqrt{2x}=\frac{28}{13}\)

\(\Rightarrow x=\frac{392}{169}\)

b/ \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\Rightarrow x=9\)

c/ \(3\sqrt{2x+1}>15\Rightarrow\sqrt{2x+1}>5\)

\(\Rightarrow2x+1>25\Rightarrow x>12\)

d/ \(\sqrt{x}+1>12\Rightarrow\sqrt{x}>11\Rightarrow x>121\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
LL
Xem chi tiết
PT
Xem chi tiết
NP
Xem chi tiết
SN
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
NO
Xem chi tiết