Bài 1: Căn bậc hai

TB

Bài 1: Cho x,y,z >0 thỏa mãn:

xy+yz+xz \(\ge\)2xyz

Tìm Max A= (x-1)(y-1)(z-1)

Bài 2: Cho a,b,c >0 thỏa mãn:

\(\dfrac{c+1}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)

Tìm Min M= (a+1)(b+1)(c+1)

H24
31 tháng 7 2017 lúc 21:03

1. Vì x, y, z > 0

\(xy+yz+zx\ge2xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\)

Suy ra:

\(\dfrac{1}{x}\ge1-\dfrac{1}{y}+1-\dfrac{1}{z}=\dfrac{y-1}{y}+\dfrac{z-1}{z}\ge2\sqrt{\dfrac{\left(y-1\right)\left(z-1\right)}{yz}}\). (1)

Tương tự \(\dfrac{1}{y}\ge2\sqrt{\dfrac{\left(z-1\right)\left(x-1\right)}{zx}}\) (2)

\(\dfrac{1}{z}\ge2\sqrt{\dfrac{\left(x-1\right)\left(y-1\right)}{xy}}\) (3)

Nhân (1), (2), (3) với nhau theo vế ta được

\(\dfrac{1}{xyz}\ge\dfrac{8\left(x-1\right)\left(y-1\right)\left(z-1\right)}{xyz}\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{2}\)

Bình luận (2)
H24
1 tháng 8 2017 lúc 16:03

\(\dfrac{c+1}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)

\(\Leftrightarrow1-\dfrac{2}{c+3}\ge\dfrac{1}{a+2}+\dfrac{3}{b+4}\)

\(\Leftrightarrow1-\dfrac{1}{a+2}\ge\dfrac{3}{b+4}+\dfrac{2}{c+3}\ge2\sqrt{\dfrac{6}{\left(b+4\right)\left(c+3\right)}}\)

Hay \(\dfrac{a+1}{a+2}\ge2\sqrt{\dfrac{6}{\left(b+4\right)\left(c+3\right)}}\) (1)

Tương tự \(\dfrac{b+1}{b+4}\ge2\sqrt{\dfrac{2}{\left(c+3\right)\left(a+2\right)}}\) (2)

\(\dfrac{c+1}{c+3}\ge2\sqrt{\dfrac{3}{\left(a+2\right)\left(b+4\right)}}\) (3)

Nhân (1), (2), (3) vế theo vế

\(\dfrac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\ge8.\dfrac{6}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge48\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=3\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
PA
Xem chi tiết
VC
Xem chi tiết
PC
Xem chi tiết
IM
Xem chi tiết
NN
Xem chi tiết
HP
Xem chi tiết
NT
Xem chi tiết
LA
Xem chi tiết