Bài 1: Căn bậc hai

PA

cho x,y,z >0 thỏa mãn :xyz=1 . c/m : \(\dfrac{x^4y}{x^2+1}+\dfrac{y^4z}{y^2+1}+\dfrac{z^4x}{z^2+1}\ge\dfrac{3}{2}\)

H24
28 tháng 5 2017 lúc 11:09

\(\sum\dfrac{x^4y}{x^2+1}=\sum\dfrac{x^3.\dfrac{1}{z}}{x^2+xyz}=\sum\dfrac{x^2}{z\left(x+yz\right)}=\sum\dfrac{x^2}{xz+1}\)

Áp dụng bất đẳng thức cauchy-schwarz:

\(Vt=\sum\dfrac{x^2}{xz+1}\ge\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+3}\)

mà theo AM-GM: \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)

hay \(3\le xy+yz+xz\)

do đó \(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

P/s: Câu này khoai

Bình luận (2)

Các câu hỏi tương tự
VC
Xem chi tiết
MH
Xem chi tiết
TV
Xem chi tiết
HP
Xem chi tiết
HP
Xem chi tiết
IM
Xem chi tiết
MH
Xem chi tiết
TB
Xem chi tiết
VT
Xem chi tiết