Bài 3. PHƯƠNG TRÌNH ELIP

LN

bài 1: cho elip ( E) \(9x^2+25y^2=225\) và đường thẳng d vuông góc với trục lớn tại tiêu điểm bên phải F2 cắt ( E) tại hai điểm M,N. Tìm tọa độ các điểm M,N

bài 2: phương trình chính tắc của E đi qua hai điểm A\(\left(1;\frac{\sqrt{3}}{2}\right)\) B\(\left(0;1\right)\)

NL
5 tháng 5 2019 lúc 21:48

Bài 1:

\(9x^2+25y^2=225\Leftrightarrow\frac{x^2}{25}+\frac{y^2}{9}=1\)

\(\Rightarrow c^2=a^2-b^2=25-9=16\Rightarrow c=4\Rightarrow F_2\left(4;0\right)\)

Đường thẳng qua \(F_2\) vuông góc trục lớn có pt \(x=4\)

\(\Rightarrow9.4^2+25y^2=225\Leftrightarrow25y^2=81\Rightarrow\left[{}\begin{matrix}y=\frac{9}{5}\\y=-\frac{9}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}M\left(4;\frac{9}{5}\right)\\N\left(4;-\frac{9}{5}\right)\end{matrix}\right.\)

Bài 2:

Gọi pt elip có dạng \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a^2}+\frac{3}{4b^2}=1\\\frac{0}{a^2}+\frac{1}{b^2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2=1\\a^2=4\end{matrix}\right.\)

Phương trình elip: \(\frac{x^2}{4}+\frac{y^2}{1}=1\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NH
Xem chi tiết
BK
Xem chi tiết
LN
Xem chi tiết
MT
Xem chi tiết
CV
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết