Giải PT.
a)\(\sqrt[3]{x+4}-\sqrt[3]{x-6}=1\)
b)\(\sqrt[3]{x^2-8\sqrt[3]{x}}=20\)
c)\(\frac{x\sqrt[3]{x}-1}{\sqrt[3]{x^2-1}}-\frac{\sqrt[3]{x^2-1}}{\sqrt[3]{x}}=4\)
Cho a, b, c, x, y, z thoả mãn: x + y + z = 1 và \(\dfrac{a}{x^3}=\dfrac{b}{y^3}=\dfrac{c}{z^3}\). Chứng minh rằng: \(\sqrt[3]{\dfrac{a}{x^2}+\dfrac{b}{y^2}+\dfrac{c}{z^2}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tính A với x=14-6\(\sqrt{5}\)
c) Tìm Min A
Rút gọn BT với \(x>0;x\ne8\)
\(P=\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)
Giải phương trình
\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x-27\)
\(\sqrt{x+3}+\sqrt{y-2}+\sqrt{z-3}=\dfrac{1}{2}\left(x+y+z\right)\)
\(x+y+4=2\sqrt{x}+4\sqrt{y-1}\)
\(x^2+9x+20=2\sqrt{3x+10}\)
rút gọn biểu thức
P=\(\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)\)+\(\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\).\(\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+\sqrt[3]{x}}\right)\)
Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
Tính \(M=\dfrac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
P=\(^{x^3+y^3}\)-3(x+y)+1969
Tính giá trị của biểu thức P với
X=\(\sqrt[3]{y}+4\sqrt{5}+\sqrt[3]{9}-4\sqrt{5}\)
Y=\(\sqrt[3]{3}+2\sqrt{2}+\sqrt{3}-2\sqrt{2}\)