\(A=\dfrac{2\sqrt{a}}{\sqrt{a}+3}+\dfrac{\sqrt{a}+1}{\sqrt{a}-3}+\dfrac{3-7\sqrt{a}}{9-a}\) (ĐK: \(x\ge0,x\ne9\))
\(A=\dfrac{2\sqrt{a}}{\sqrt{a}+3}+\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-\dfrac{3+7\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(A=\dfrac{2\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}-\dfrac{3+7\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(A=\dfrac{2a-6\sqrt{a}+a+\sqrt{a}+3\sqrt{a}+3-3-7\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(A=\dfrac{3a-9\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(A=\dfrac{3\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(A=\dfrac{3\sqrt{a}}{\sqrt{a}+3}\)