Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

NT

P=\(\dfrac{\left(\sqrt{a^2+a\sqrt{a^2-b^2}}-\sqrt{a^2-a\sqrt{a^2-b^2}}\right)^2}{2\sqrt{a^3b}}:\left(\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}-2\right)\left(a>0,b>0\right)\)

a)rút gọn P

b)tính P biết a=7+\(4\sqrt{3}\) , b=7-\(4\sqrt{3}\)

NT
15 tháng 10 2022 lúc 10:54

a: \(G=\left(\sqrt{a^2+a\sqrt{a^2-b^2}}-\sqrt{a^2-a\sqrt{a^2-b^2}}\right)^2\)

\(=a^2+a\sqrt{a^2-b^2}+a^2-a\sqrt{a^2-b^2}-2\cdot\sqrt{a^4-a^2\left(a^2-b^2\right)}\)

\(=2a^2-2\cdot\sqrt{a^4-a^4+a^2b^2}=2a^2-2ab\)

\(A=\left(\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}-2\right)\)

\(=\dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}}-\dfrac{2\sqrt{ab}}{\sqrt{ab}}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{ab}}\)

\(P=\dfrac{2a^2-2ab}{2a\sqrt{ab}}:\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{ab}}\)

\(=\dfrac{2a\left(a-b\right)}{2a\sqrt{ab}}\cdot\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

b: Khi \(a=7+4\sqrt{3};b=7-4\sqrt{3}\) thì

\(P=\dfrac{2+\sqrt{3}+2-\sqrt{3}}{2+\sqrt{3}-2+\sqrt{3}}=\dfrac{4}{2\sqrt{3}}=\dfrac{2}{\sqrt{3}}\)

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
TD
Xem chi tiết
HH
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
OK
Xem chi tiết
H24
Xem chi tiết
KG
Xem chi tiết