b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)
b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)
Bài 1 Cho \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\left(b\ne0\right)\) CMR \(c=0\)
Bài 2 Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}CMR\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)và b, d khác 0. CMR \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(Cho\dfrac{a}{b}=\dfrac{c}{d}CMR\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2-b^2}{c^2-d^2}\)
Bài 1: Cho tỉ lệ thức: \(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)( \(b,d\ne0\)) CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\)
Bài 2: Cho \(yz:zx=1:2\) Hãy tính \(\dfrac{x}{y^2}:\dfrac{y}{2^x}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a.b}{c.d}\) với a;b;c;d khác 0 và c khác +- d
CMR: \(\dfrac{a}{b}=\dfrac{c}{d} \) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho a, b, c, d là 4 số khác 0 thỏa mãn \(b^2\) = ac; \(c^2\) = bd và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR\)
a, \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b, \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
c, \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho các số a,b,c,d ≠ 0 và \(b^2=a.c\) ; \(c^2=b.d\) ; \(b^3+c^3+d^3\ne0\). C/m rằng :\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)