Bài 8: Rút gọn biểu thức chứa căn bậc hai

H24

2) Cho ABC vuông tại A. Kẻ đường cao AH của AABC Ke HM perp AB HN perp AC (M in AB ,N in AC) a) Giải tam giác vuông ABC biết AB = 5cm AC = 8cm (số đo góc làm tròn đến độ, số đo độ dài làm tròn đến chữ số thập phân thứ 3) b) Chung minh M * N ^ 2 = AM.MB + AN.NC c) Chứng minh (A * B ^ 2)/(A * C ^ 2) = BH CH v hat a tan C = (BM)/(CN)

NT
27 tháng 8 2023 lúc 15:40

a:

ΔABC vuông tại A

=>BC^2=AB^2+AC^2

=>\(BC^2=25+64=89\)

=>\(BC=\sqrt{89}\)

Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{8}{5}\)

=>\(\widehat{B}\simeq58^0\)

=>\(\widehat{C}=32^0\)

b: Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2; BM*BA=BH^2; AM*MB=HM^2

ΔAHC vuông tại H có HN làđường cao

nên AN*AC=AH^2;CN*CA=CH^2; NA*NC=NH^2

AM*MB+NA*NC

=HM^2+HN^2

=MN^2

c: AB^2/AC^2

\(=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
KT
Xem chi tiết
TM
Xem chi tiết
LN
Xem chi tiết
NL
Xem chi tiết
MT
Xem chi tiết
NN
Xem chi tiết