Bài 4: Giá trị tuyệt đối của một số hữu tỉ. Cộng, trừ, nhân, chia số thập phân

TN

1) Tìm x \(\in\) Q

a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)

b) \(\left|5-\dfrac{1}{2}x\right|=\left|\dfrac{-1}{5}\right|\)

2) Tìm x, y, z, biết

\(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)

NT
25 tháng 6 2017 lúc 20:36

Bài 2:

\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\\\left(y+\dfrac{1}{2}\right)^2\ge0\\\left(z-\dfrac{1}{3}\right)^2\ge0\end{matrix}\right.\Rightarrow\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2\ge0\)\(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{-1}{2}\\z=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{4},y=\dfrac{-1}{2},z=\dfrac{1}{3}\)

Bình luận (0)
H24
25 tháng 6 2017 lúc 20:37

1)

a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)

\(\Leftrightarrow2x=\dfrac{7}{2}-\dfrac{5}{2}\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

b) \(\left|5-\dfrac{1}{2}x\right|=\left|-\dfrac{1}{5}\right|\)

\(\Leftrightarrow\left|5-\dfrac{1}{2}x\right|=\dfrac{1}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}5-\dfrac{1}{2}x=\dfrac{1}{5}\\5-\dfrac{1}{2}x=-\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{48}{5}\\x=\dfrac{52}{5}\end{matrix}\right.\)

Vậy \(x_1=\dfrac{48}{5};x_2=\dfrac{52}{5}\)

Bình luận (0)
AT
25 tháng 6 2017 lúc 20:39

a/ \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)

\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

b/ \(\left|5-\dfrac{1}{2}x\right|=\left|-\dfrac{1}{5}\right|\)

\(\Rightarrow\left|5-\dfrac{1}{2}x\right|=\dfrac{1}{5}\)

\(\Rightarrow\left[{}\begin{matrix}5-\dfrac{1}{2}x=\dfrac{1}{5}\\5-\dfrac{1}{2}x=\dfrac{1}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{5}\\x=\dfrac{13}{5}\end{matrix}\right.\)

Bài 2:

\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\\\left(x-\dfrac{1}{3}\right)^2\ge0\forall z\end{matrix}\right.\)

=> Để bt = 0 thì\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x-\dfrac{1}{2}=0\\y+\dfrac{1}{2}=0\\z-\dfrac{1}{3}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy.....................

Bình luận (1)
MP
25 tháng 6 2017 lúc 21:02

1) a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\) \(\Leftrightarrow\) \(2x=\dfrac{7}{2}-\dfrac{5}{2}\) \(\Leftrightarrow\) \(2x=1\) \(\Leftrightarrow\) \(x=\dfrac{1}{2}\)

b) \(\left|5-\dfrac{1}{2}x\right|=\left|\dfrac{-1}{5}\right|\) \(\Leftrightarrow\) \(\left(\left|5-\dfrac{1}{2}x\right|\right)^2=\left(\left|\dfrac{-1}{5}\right|\right)^2\)

\(\Leftrightarrow\) \(\left(5-\dfrac{1}{2}x\right)^2=\dfrac{1}{25}\) \(\Leftrightarrow\) \(5-\dfrac{1}{2}x=\pm\dfrac{1}{5}\)

th1 : \(5-\dfrac{1}{2}x=\dfrac{1}{5}\) \(\Leftrightarrow\) \(-\dfrac{1}{2}x=\dfrac{1}{5}-5=-\dfrac{24}{5}\)

\(\Leftrightarrow\) \(x=-\dfrac{24}{5}:-\dfrac{1}{2}=\dfrac{48}{5}\)

th2 : \(5-\dfrac{1}{2}x=-\dfrac{1}{5}\) \(\Leftrightarrow\) \(-\dfrac{1}{2}x=-\dfrac{1}{5}-5=-\dfrac{26}{5}\)

\(x=-\dfrac{26}{5}:-\dfrac{1}{2}=\dfrac{52}{5}\)

vậy \(x=\dfrac{48}{5};x=\dfrac{52}{5}\)

2) ta có : \(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\\\left(y+\dfrac{1}{2}\right)^2\ge0\\\left(z-\dfrac{1}{3}\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\) \(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2\ge0\)

vậy \(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-\dfrac{1}{2}=0\\y+\dfrac{1}{2}=0\\z-\dfrac{1}{3}=0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{1}{2}\\z=\dfrac{1}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{1}{4};y=-\dfrac{1}{2};z=\dfrac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
PL
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
MP
Xem chi tiết
PL
Xem chi tiết
LV
Xem chi tiết
NN
Xem chi tiết
QT
Xem chi tiết