Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

TN

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?

2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?

3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)

4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?

5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?

6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?

7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?

8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?

9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?

10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?

11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)

NL
15 tháng 8 2020 lúc 19:19

1.

\(\Leftrightarrow4\left(\frac{1-cos2x}{2}\right)+3\sqrt{3}sin2x-2\left(\frac{1+cos2x}{2}\right)=4\)

\(\Leftrightarrow\sqrt{3}sin2x-cos2x=1\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{6}=\frac{5\pi}{6}+l2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{2}+l\pi\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm dương nhỏ nhất \(x=\frac{\pi}{6}\)

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:21

2.

\(\Leftrightarrow6\left(\frac{1-cos2x}{2}\right)+7\sqrt{3}sin2x-8\left(\frac{1+cos2x}{2}\right)=6\)

\(\Leftrightarrow\sqrt{3}sin2x-cos2x=1\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:24

3.

\(sinx+\sqrt{3}cosx=1\)

\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\alpha=-\frac{\pi}{6}\\\beta=\frac{\pi}{2}\end{matrix}\right.\) \(\Rightarrow\alpha\beta=-\frac{\pi^2}{12}\)

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:31

4.

\(\Leftrightarrow\frac{1+cos2x}{2}-\sqrt{3}sin2x=1+1-cos2x\)

\(\Leftrightarrow3cos2x-2\sqrt{3}sin2x=3\) (chà số liệu xấu)

\(\Leftrightarrow\frac{3}{\sqrt{21}}cos2x-\frac{2\sqrt{3}}{\sqrt{21}}sin2x=\frac{3}{\sqrt{21}}\)

Đặt \(\frac{3}{\sqrt{21}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow cos2x.cosa-sin2a.sina=cosa\)

\(\Leftrightarrow cos\left(2x+a\right)=cosa\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+a=a+k2\pi\\2x+a=-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=-a+k\pi\end{matrix}\right.\)

Có 4 điểm biểu diễn

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:37

5.

Nhìn lại bài 1, hình như ko khác dù chỉ 1 chữ

6.

\(\Leftrightarrow cos2x+\sqrt{3}sin2x=\sqrt{3}cosx-sinx\)

\(\Leftrightarrow\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x=\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx\)

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=cos\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=x+\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{3}=-x-\frac{\pi}{6}+l2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{18}+\frac{l2\pi}{3}\end{matrix}\right.\)

\(0< x< 2020\Rightarrow\left\{{}\begin{matrix}0< \frac{\pi}{2}+k2\pi< 2020\\0< \frac{\pi}{18}+\frac{l2\pi}{3}< 2020\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}0\le k\le321\\0\le l\le964\end{matrix}\right.\) \(\Rightarrow\)\(322+965=1287\) nghiệm

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:40

7.

\(\Leftrightarrow sin^2\frac{x}{2}+cos^2\frac{x}{2}+2sin\frac{x}{2}cos\frac{x}{2}+\sqrt{3}cosx=2\)

\(\Leftrightarrow1+sinx+\sqrt{3}cosx=2\)

\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) \(\left\{{}\begin{matrix}a=\frac{\pi}{2}\\b=-\frac{\pi}{6}\end{matrix}\right.\) \(\Rightarrow a+b=\frac{\pi}{3}\)

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:44

8.

\(\Leftrightarrow3sin3x-4sin^33x+\sqrt{3}cos9x=2cosx\)

\(\Leftrightarrow sin9x+\sqrt{3}cos9x=2cosx\)

\(\Leftrightarrow\frac{1}{2}sin9x+\frac{\sqrt{3}}{2}cos9x=cosx\)

\(\Leftrightarrow cos\left(9x-\frac{\pi}{6}\right)=cosx\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\frac{\pi}{6}=x+k2\pi\\9x-\frac{\pi}{6}=-x+l2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{48}+\frac{k\pi}{4}\\x=\frac{\pi}{60}+\frac{l\pi}{5}\end{matrix}\right.\)

\(0< x< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}0< \frac{\pi}{48}+\frac{k\pi}{4}< \frac{\pi}{2}\\0< \frac{\pi}{60}+\frac{l\pi}{5}< \frac{\pi}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}0\le k\le1\\0\le l\le2\end{matrix}\right.\) \(\Rightarrow\)\(2+3=5\) nghiệm

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:48

9.

\(\Leftrightarrow sin2x+\frac{1+cos2x}{2}=\frac{m}{2}\)

\(\Leftrightarrow2sin2x+cos2x=m-1\)

\(\Leftrightarrow\frac{2}{\sqrt{5}}sin2x+\frac{1}{\sqrt{5}}cos2x=\frac{m-1}{\sqrt{5}}\)

Đặt \(\frac{2}{\sqrt{5}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sin2x.cosa+cos2x.sina=\frac{m-1}{\sqrt{5}}\)

\(\Leftrightarrow sin\left(2x+a\right)=\frac{m-1}{\sqrt{5}}\)

Do \(-1\le sin\left(2x+a\right)\le1\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(-1\le\frac{m-1}{\sqrt{5}}\le1\)

\(\Rightarrow1-\sqrt{5}\le m\le1+\sqrt{5}\)

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:52

10.

\(\Leftrightarrow\frac{\left(m^2+2\right)}{2}\left(1+cos2x\right)-2msin2x=-1\)

\(\Leftrightarrow\left(m^2+2\right)cos2x-4m.sin2x=-4-m^2\)

Áp dụng điều kiện có nghiệm của pt lượng giác bậc nhất, pt có nghiệm khi và chỉ khi:

\(\left(m^2+2\right)^2+16m^2\ge\left(-4-m^2\right)^2\)

\(\Leftrightarrow10m^2\ge12\)

\(\Leftrightarrow m^2\ge\frac{6}{5}\Rightarrow\left[{}\begin{matrix}m\ge\sqrt{\frac{6}{5}}\\m\le-\sqrt{\frac{6}{5}}\end{matrix}\right.\)

Bình luận (0)
NL
15 tháng 8 2020 lúc 19:56

11.

\(y=\frac{2sin^22x+6sin4x}{4cos^22x-2sin4x+4}=\frac{1-cos4x+6sin4x}{2cos4x-2sin4x+6}\)

\(\Leftrightarrow2y.cos4x-2y.sin4x+6y=1-cos4x+6sin4x\)

\(\Leftrightarrow\left(2y+1\right)cos4x-\left(2y+6\right)sin4x=1-6y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2y+1\right)^2+\left(2y+6\right)^2\ge\left(1-6y\right)^2\)

\(\Leftrightarrow7y^2-10y-9\le0\)

\(\Rightarrow\frac{5-2\sqrt{22}}{7}\le y\le\frac{5+2\sqrt{22}}{7}\)

Bình luận (0)
TN
17 tháng 8 2020 lúc 18:57

tính lúc sau sai r ạ

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
HB
Xem chi tiết
JE
Xem chi tiết
KN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết