Bài 4: Góc tạo bởi tiếp tuyến và dây cung

NH

1. Cho tam giác ABC nội tiếp đường tròn tâm O. Tiếp tuyến tại A cắt BC tại I.

a. \(\dfrac{IB}{IC}=\dfrac{AB^2}{AC^2}\)

b. Tính IA và IC biết AB=20cm ; AC=28cm ; BC=24cm.

2. Cho đường tròn tâm O, dây cung MN, tiếp tuyến Mx. Trên tia Mx lấy điểm T sao cho MT=MN. Đường thẳng TN cắt đường tròn tại S. Chứng minh:

a. \(\Delta SMT\) cân

b. \(TM^2=TF\cdot TN\)

3. Cho tam giác SBC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE và CF cắt nhau tại H và cắt đường tròn theo thứ tự tại M,N,K. Kẻ đường kính AI. Chứng minh:

a. C là điểm chính giữa của \(\widehat{MCN}\)

b. N đối xứng với H qua AC ; M đối xứng với H qua BC ; K đối xứng với H qua AB.

c. Chứng minh: tứ giác BCIM là hình thang cân

d. Gọi G là trung điểm của BC. Chứng minh: AH=2OG.

e. Chứng minh: \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=4\)

4. Cho tam giác ABC đều nội tiếp (O;R). Gọi M là một điểm bất kỳ trên cung nhỏ BC. Lấy điểm I trên dây AM sao cho MI=MB.

a. Chứng minh tam giác MBI là tam giác đều.

b. Chứng minh MA=MB+MC.

c. Gọi D là giao điểm của MA và BC. Chứng minh: \(\dfrac{1}{MD}=\dfrac{1}{MB}+\dfrac{1}{MC}\)

d. Tính tổng \(MA^2+MB^2+MC^2\) theo R


Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
2N
Xem chi tiết
MV
Xem chi tiết
H24
Xem chi tiết
KL
Xem chi tiết
H24
Xem chi tiết
PV
Xem chi tiết
HN
Xem chi tiết