Bài 8: Đường tròn nội tiếp. Đường tròn ngoại tiếp

NT

a: Để hệ có nghiệm thì \(\dfrac{2m+1}{m+3}\ne\dfrac{-3}{-\left(m+1\right)}\)

=>\(\left(2m+1\right)\left(m+1\right)\ne3\left(m+3\right)\)

=>\(2m^2+3m+1-3m-9\ne0\)

=>\(2m^2-8\ne0\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

b: \(\left\{{}\begin{matrix}\left(2m+1\right)x-3y=3m-2\\\left(m+3\right)x-\left(m+1\right)y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(2m+1\right)\left(m+1\right)x-3\left(m+1\right)y=\left(3m-2\right)\left(m+1\right)\\3\left(m+3\right)x-3\left(m+1\right)y=6m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m^2+3m+1-3m-9\right)=\left(3m-2\right)\left(m+1\right)-6m\\\left(2m+1\right)x-3y=3m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m^2-8\right)=3m^2+3m-2m-2-6m\\3y=\left(2m+1\right)x-3m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\cdot2\left(m-2\right)\left(m+2\right)=3m^2-5m-2=\left(m-2\right)\left(3m+1\right)\\3y=\left(2m+1\right)x-3m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3m+1}{2\left(m+2\right)}\\3y=\left(2m+1\right)\cdot\dfrac{3m+1}{2\left(m+2\right)}-3m+2=\dfrac{6m^2+5m+1+\left(-3m+2\right)\cdot\left(2m+4\right)}{2m+4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3m+1}{2\left(m+2\right)}\\3y=\dfrac{6m^2+5m+1-6m^2-12m+4m+8}{2m+4}=\dfrac{-3m+9}{2m+4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3m+1}{2m+4}\\y=\dfrac{-m+3}{2m+4}\end{matrix}\right.\)

x>=2y

=>\(\dfrac{3m+1}{2m+4}-\dfrac{2\left(-m+3\right)}{2m+4}>=0\)

=>\(\dfrac{3m+1+2m-6}{2m+4}>=0\)

=>\(\dfrac{m-1}{m+2}>=0\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>=1\\m\ne2\end{matrix}\right.\\m< -2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
DT
Xem chi tiết
DL
Xem chi tiết
TT
Xem chi tiết
MM
Xem chi tiết
LL
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết
HD
Xem chi tiết